48 research outputs found

    Reprise d’entreprise et compétences relationnelles du nouveau dirigeant (Entreprise revival and relational compentencies of the new manager)

    Get PDF
    A travers la reprise de PME le nouveau dirigeant va acquérir des biens matériels et physiques négociés et relativement quantifiés, toutefois en ce qui concerne le système relationnel interne et externe, il aura quasiment tout à découvrir et à redéfinir en termes de modes de fonctionnement. De plus le changement de dirigeant peut simultanément produire des niveaux multiples de déstabilisation qui auront tendance à se répercuter sur le fonctionnement et les résultats de l’entreprise. L’entrepreneur va être confronté à des mécanismes de résistance qu’il essaiera de gérer autant que possible et au mieux de les transformer en leviers d’actions La maîtrise de cette transition dépendra essentiellement de ses compétences relationnelles et influencera la réussite ou l’échec de la reprise. When taking over a SME, the new leader will get negotiated and relatively well quantified tangible and physical properties. However with regards to the internal and external relational systems, he will have almost everything to discover and redefine in terms of operating modes. Moreover the change of leader may simultaneously produce multiple levels of destabilization which will tend to modify the operation and the results of the company. The new leader will be facing « mechanisms of resistance » which he will try to manage as well as possible and possibly transform them into levers of actions. The control of this transition period will depend primarily on his relational abilities and will influence the success or failure of the taking over.enterprise revival, relational competence,manager, SME

    Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells.

    Get PDF
    Fibronectin (Fn) forms a fibrillar network that controls cell behavior in both physiological and diseased conditions including cancer. Indeed, breast cancer-associated stromal cells not only increase the quantity of deposited Fn but also modify its conformation. However, (i) the interplay between mechanical and conformational properties of early tumor-associated Fn networks and (ii) its effect on tumor vascularization remain unclear. Here, we first used the Surface Forces Apparatus to reveal that 3T3-L1 preadipocytes exposed to tumor-secreted factors generate a stiffer Fn matrix relative to control cells. We then show that this early matrix stiffening correlates with increased molecular unfolding in Fn fibers, as determined by Förster Resonance Energy Transfer. Finally, we assessed the resulting changes in adhesion and proangiogenic factor (VEGF) secretion of newly seeded 3T3-L1s, and we examined altered integrin specificity as a potential mechanism of modified cell-matrix interactions through integrin blockers. Our data indicate that tumor-conditioned Fn decreases adhesion while enhancing VEGF secretion by preadipocytes, and that an integrin switch is responsible for such changes. Collectively, our findings suggest that simultaneous stiffening and unfolding of initially deposited tumor-conditioned Fn alters both adhesion and proangiogenic behavior of surrounding stromal cells, likely promoting vascularization and growth of the breast tumor. This work enhances our knowledge of cell - Fn matrix interactions that may be exploited for other biomaterials-based applications, including advanced tissue engineering approaches

    Composition−Structure Relationships in Polar Intermetallics:  Experimental and Theoretical Studies of LaNi1+xAl6-x (x = 0.44)

    Get PDF
    A new ternary aluminide, LaNi1+xAl6-x (x = 0.44), has been synthesized from La, Ni, and Al in sealed silica tubes. Its structure, determined by single-crystal X-ray diffraction, is tetragonal P4/mmm (No. 123) with Z = 1 and has the lattice parameters a = 4.200(8) and c = 8.080(8) Å. Refinement based on Fo2 yielded R1 = 0.0197 and wR2 = 0.020 [I \u3e 2σ(I)]. The compound adopts a structure type previously observed in SrAu2Ga5 and EuAu2Ga5. The atomic arrangement is closely related to the one in BaAl4 as well as in other rare-earth gallide compounds such as LaNi0.6Ga6, HoCoGa5, Ce4Ni2Ga20, Ce4Ni2Ga17, Ce4NiGa18, and Ce3Ni2Ga15. This structure exhibits a large open cavity which may be filled by a guest atom. Band structure calculations using density functional theory have been carried out to understand the stability of this new compound

    Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix

    Get PDF
    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.233157 - European Research Council; PN2 EY016586 - NEI NIH HH

    Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells

    Get PDF
    Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross each other), or from the force-induced unfolding of type III modules (unfolding model). Clarification of this issue is central to our understanding of the structural arrangement of Fn within fibrils, the mechanism of fibrillogenesis, and whether cryptic sites, which are exposed by partial protein unfolding, can be exposed by cell-derived force. In order to differentiate between these two models, two fluorescence resonance energy transfer schemes to label plasma Fn were applied, with sensitivity to either compact-to-extended conformation (arm separation) without loss of secondary structure or compact-to-unfolded conformation. Fluorescence resonance energy transfer studies revealed that a significant fraction of fibrillar Fn within a three-dimensional human fibroblast matrix is partially unfolded. Complete relaxation of Fn fibrils led to a refolding of Fn. The compactly folded quaternary structure with crossed Fn arms, however, was never detected within extracellular matrix fibrils. We conclude that the resting state of Fn fibrils does not contain Fn molecules with crossed-over arms, and that the several-fold extensibility of Fn fibrils involves the unfolding of type III modules. This could imply that Fn might play a significant role in mechanotransduction processes
    corecore